skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mandal, Aniket"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Modeling L-edge spectra at X-ray wavelengths requires consideration of spin–orbit splitting of the 2p orbitals. We introduce a low-cost tool to compute core-level spectra that combines a spin–orbit mean-field description of the Breit–Pauli Hamiltonian with nonrelativistic excited states computed using the semi-empirical density-functional theory configuration-interaction singles (DFT/CIS) method, within the state-interaction approach. Our version of DFT/CIS was introduced recently for K-edge spectra and includes a semi-empirical correction to the core orbital energies, significantly reducing ad hoc shifts that are typically required when time-dependent (TD-)DFT is applied to core-level excitations. In combination with the core/valence separation approximation and spin–orbit couplings, the DFT/CIS method affords semiquantitative L-edge spectra at CIS cost. Spin–orbit coupling has a qualitative effect on the spectra, as demonstrated for a variety of 3d transition metal systems and main-group compounds. The use of different active orbital spaces helps to facilitate spectral assignments. We find that spin–orbit splitting has a negligible effect on M-edge spectra for 3d transition metal species. 
    more » « less
    Free, publicly-accessible full text available July 11, 2026
  2. Free, publicly-accessible full text available May 1, 2026
  3. Free, publicly-accessible full text available March 13, 2026